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Abstract. Best dominant is obtained for normalized analytic functions f satisfying (1 ) ( ) ( ) ( ) ( )f z z f z zf z h z  
in the unit disk , where h is a normalized convex function, and ,  are appropriate real parameters. This fundamental 
result is next applied to investigate the convexity and starlikeness of the image domains ( )f for particular choices of h. 

Keywords: Starlike and convex functions, differential subordination, dominant.
PACS: 02.30.-f

INTRODUCTION 

Let  be the class of analytic functions f  defined in the open unit disk : { :| | 1}.z z  For ,a  n  
a positive integer, and ,z  let  

( ) : ( ) k
n k

k n

a f f z a a z  

 
and  

1

: ( ) ,k
n k

k n

f f z z a z  

with 1 .  The subclass of  consisting of starlike functions in satisfying 

( )
Re 0, ,

( )

zf z
z

f z
 

is denoted by ,  and  is the subclass of  consisting of convex functions in  satisfying 
( )

Re 1 0, .
( )

zf z
z

f z
 

 For two analytic functions f  and ,g  the function f  is subordinate to ,g  written ( )f z g ( )z if there is an 
analytic self-map w of  with (0) 0w  satisfying ( )f z g ( ( )).w z  If g  is univalent, then f  subordinate to g  
is equivalent to (0)f g (0)  and ( )f g ( ).  

This paper considers a class of functions satisfying a second-order differential subordination to a given convex  
function. Best dominant amongst the solutions to this differential subordination is determined. Further, sufficient 
conditions are obtained that ensure these solutions are either starlike or convex functions in .� Such conditions in 
terms of differential inequalities have been investigated in several works, notably by [1, 2, 3, 4, 5, 6, 7]. In 
particular, Kanas and Owa [8] studied connections between certain second-order differential subordination involving 
expressions of the form ( ) , ( )f z z f z  and 1 ( ) ( ).zf z f z  The class studied in this paper presents a more 
general framework. 
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The following lemma will be needed. 
 

Lemma 1 [9, Theorem 1, p. 192] Let h  be convex in  with (0) , 0h a  and Re 0.  If ( )np a  and  

( )
( ) ( ),

zp z
p z h z

then  
( ) ( ) ( ),p z q z h z

where
( / ) 1

/ 0
( ) ( ) .

z n
n

q z h t t dt
nz

The function q  is convex and is the best ( , )a n dominant. 

SECOND – ORDER DIFFERENTIAL SUBORDINATION 

In the following sequel, we shall assume that h  is an analytic convex function in  with (0) 1.h  For 0     

and 2 0  consider the class of functions nf  satisfying the second-order differential subordination 
 

   (1) 
 

Let  and  satisfy 
(2) 

 
Note that Re 0  and Re 0.   

The following result gives the best dominant to solutions of the differential subordination (1).  
 
Theorem 1 Let  and  be given by (2), and ,  be real numbers such that 0  and 2 0 . If nf
satisfies 

                                                

then 
1 1 (1/ ) 1 (1/ ) 1

2 0 0

( ) 1
( ) : ( ) ,n nf z

q z h rsz r s drds
z n

and q  is the best ( , )a n dominant. 
 
Proof. Let 

1
1 2

( )
( ) 1 .n n

n n

f z
p z a z a z

z
 

Evidently 
2( )

(1 ) ( ) ( ) ( ) ( 2 ) ( ) ( ),
f z

f z zf z z p z zp z p z
z

 

 
and (1) can be expressed as 
    2 ( ) ( 2 ) ( ) ( ) ( ).z p z zp z p z h z     (3)  

 
 
 

( )
(1 ) ( ) ( ) ( ),

f z
f z zf z h z

z

( )
(1 ) ( ) ( ) ( ).

f z
f z zf z h z

z

  and   .

581 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

202.170.57.247 On: Mon, 21 Jul 2014 08:10:49



Writing 
( ) ( ) ( ),F z zp z p z  

it follows that 
2( ) ( ) ( ) ( 2 ) ( ) ( ) ( ),F z zF z z p z zp z p z h z  

where  and  are given by (2). Lemma 1 now yields 

(1/ ) 1
1/ 0

1
( ) ( ) ,

z n
n

F z h t t dt
nz

 

and thus 
1 (1/ ) 1

0

1
( ) ( ) ( ) .np z zp z h rz r dr

n
 

A second application of Lemma 1 shows that 
 

1 (1/ ) 1 (1/ ) 1
1/ 0 0

1 1
( ) ( ) ,

z n n
n

p z h rt r dr t dt
nz n

 

which in view of (2) implies that 
1 1 (1/ ) 1 (1/ ) 1

2 0 0

( ) 1
( ) : ( ) .n nf z

q z h rsz r s drds
z n

 

Since 2 2( ) ( 2 ) ( ) ( 1) ( ) ( ) ( ),q z nzq z n n zq z n z q z h z the function ( ) ( )Q z zq z is a solution  

of the differential subordination 
( )

(1 ) ( ) ( ) ( ).
f z

f z zf z h z
z

 

This shows that q q  for all ( , )a n dominants ,q  and hence q  is the best ( , )a n dominant.                                 
The following result is an immediate consequence of Theorem 1. 
 

Corollary 1 Under the assumptions of Theorem 1, if 
( )

(1 ) ( ) 1+ Mz( ) ,
f z

f z zf z
z

           (4)

then 

(5) 

and the superordinate function is the best dominant. 
An application of Corollary 1 gives the following sufficient condition for starlikeness. 
 

Theorem 2 Let  and  be real numbers with 1  and 2 .  Further let nf  and   
0 ( , , ),M M n  where 

     (6) 

If f  satisfies the differential subordination 

( )
(1 ) ( ) 1+ Mz( ) ,

f z
f z zf z

z
then .f  
 

( )
1 ,

1 ( 1)

f z Mz

z n n n

2( 2 )[1 ( 1)]
( , , ) .

( 1) [ ( 1) 2]

n n n
M n

n n n
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Proof. Let 
                                                                        (7) 
                                                          

A brief computation shows that  
                                                                                   
 

(8) 
 

 
In view of the analytical condition for starlikeness, that is, ( )/ ( )Re 0zf z f z  in ,  it remains to show that 
  

 
(9) 

 
 

Using (7), (4) can be rewritten as 
 

(10) 
 

Integrating (10), evidently 
 
 

(11) 
 

where  is an analytic self-map of  with (0) 0.  It follows from (7) and (11) that 
 

1

0

( ) 1 1 ( 1) ( )
1 ( ) .

( ) ( ) ( )

zw z w z
M sz ds

w z w z zw z
 

 
For (9) to hold true, it is sufficient  to prove 
 

 
(12) 

 
 
Now the subordination (5), implies 

 

   (13) 
 

 
where 1 ( 1),M n n n  while 

 
(14) 

 
 

Since ( ) ,z z  a brief computation shows that 
 
 

(15) 
 

( ) ( ).f z zw z
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Re Re 1 .
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zf z zw z

f z w z

( )
1.

( )

zw z

w z

2( ) ( 2 ) ( ) ( ) 1 .w z zw z z w z Mz

12

0
(1 ) ( ) ( ) ( ) ( ) ,w z zw z z w z z Mz sz ds

1

0

1 1 ( 1) ( )
1 ( ) 1.
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w z zw z

1 1 ( 1)
,
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Taking into account the inequalities (13), (14) and (15), the condition (12) is fulfilled whenever ( , , )M M n  
with ( , , )M n  given by (6). This completes the proof.                                                                                              

The following theorem which gives sufficient conditions for convexity is also a consequence of Corollary 1. 
 
Theorem 3 Let  and  be real numbers with 1  and 22 .  Further let nf  and 

0 ( , , ),M M n  where 

(16) 

If f  satisfies the differential subordination 

( )
(1 ) ( ) 1+ Mz( ) ,

f z
f z zf z

z
        

then .f
 
Proof. In view of the fact 

( ) ( )
Re 1 1 0,

( ) ( )

zf z zf z

f z f z
 

 
it is sufficient to prove the inequality 

 
(17) 

 
 

Let  
 

(18) 
 
 

Proceeding similarly as in the proof of Theorem 2, with  as an analytic self-map of the unit disk, it follows from 
(18) and (4) that 

 
 

(19) 
 

 
Subsequently, 
 

( ) 1 1 ( 1)
1 ( ) ,

( ) ( ) ( )
| |zf z f

M z
f z f z zf z

 

 
which leads to the condition 
 

 
(20) 

 
 

for (17) to hold true.   
 
 

2 22[1 ( 1)][( 2 ) 2
( , , ) .

2 [2 ( 1) ( 1)] ( )[ ( 1) ( 1)]

]n n n
M n

n n n n n n

( )
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( )

zf z

f z

( )
( ) 1 1 ( ).

( )

zf z
f z zf z
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( ) ( )
(1 ) ( ) ( ) 1 1 1 ( ).

( )

f z zf z
f z f z M z

z f z

1 1 1
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Applying (7) and (11), as well as the inequalities (13), (14) and (15), yield 
 

 
(21) 

 
 
and 
 

 
 (22) 

 
 
where 

2( 2 )[1 ( 1)]
.

( 1) [ ( 1) 2]

n n n
M

n n n
 

 
In view of (21), (22) and the fact that | 1 ( ) | 1 ,M z M  (20) is fulfilled for ( , , ),M M n  where  

( , , )M n  is given by (16). This completes the proof.                                                                                                 
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