

Dominant of functions satisfying a differential subordination and applications

R. Chandrashekar, Rosihan M. Ali, and K. G. Subramanian

Citation: AIP Conference Proceedings **1605**, 580 (2014); doi: 10.1063/1.4887653 View online: http://dx.doi.org/10.1063/1.4887653 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1605?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Admissible second-order differential subordinations for analytic functions with fixed initial coefficient AIP Conf. Proc. **1605**, 655 (2014); 10.1063/1.4887667

AN APPLICATION ON DIFFFERANTIAL SUBORDINATION AIP Conf. Proc. **1309**, 939 (2010); 10.1063/1.3525229

Differential Subordination and Superordinate for Multivalent Functions AIP Conf. Proc. **1309**, 58 (2010); 10.1063/1.3525213

ON APPLICATIONS OF DIFFERENTIAL SUBORDINATION ASSOCIATED WITH GENERALIZED HYPERGEOMTRIC FUNCTIONS AIP Conf. Proc. **1309**, 517 (2010); 10.1063/1.3525154

Differential equations satisfied by Fredholm determinants and application to the inversion formalism for parameter dependent potentials J. Math. Phys. **17**, 2143 (1976); 10.1063/1.522858

Dominant of Functions Satisfying a Differential Subordination and Applications

R. Chandrashekar^a, Rosihan M. Ali^b and K. G. Subramanian^c

 ^aDepartment of Technology Management, Faculty of Technology Management and Business, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
 ^bSchool of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
 ^cSchool of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Abstract. Best dominant is obtained for normalized analytic functions f satisfying $(1-\alpha)f(z)/z + \alpha f'(z) + \beta z f''(z) \prec h(z)$ in the unit disk \mathbb{D} , where h is a normalized convex function, and α, β are appropriate real parameters. This fundamental result is next applied to investigate the convexity and starlikeness of the image domains $f(\mathbb{D})$ for particular choices of h.

Keywords: Starlike and convex functions, differential subordination, dominant. PACS: 02.30.-f

INTRODUCTION

Let \mathcal{H} be the class of analytic functions f defined in the open unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. For $a \in \mathbb{C}$, n a positive integer, and $z \in \mathbb{D}$, let

$$\mathcal{H}_n(a) = \left\{ f \in \mathcal{H} : f(z) = a + \sum_{k=n}^{\infty} a_k z^k \right\}$$

and

$$\mathcal{A}_n = \left\{ f \in \mathcal{H} : f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \right\},$$

with $A_1 = A$. The subclass of A consisting of starlike functions in \mathbb{D} satisfying

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0, \quad z \in \mathbb{D},$$

is denoted by \mathcal{ST} , and \mathcal{CV} is the subclass of \mathcal{A} consisting of convex functions in \mathbb{D} satisfying

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > 0, \quad z \in \mathbb{D}.$$

For two analytic functions f and g, the function f is subordinate to g, written $f(z) \prec g(z)$ if there is an analytic self-map w of \mathbb{D} with w(0) = 0 satisfying f(z) = g(w(z)). If g is univalent, then f subordinate to g is equivalent to f(0) = g(0) and $f(\mathbb{D}) \subseteq g(\mathbb{D})$.

This paper considers a class of functions satisfying a second-order differential subordination to a given convex function. Best dominant amongst the solutions to this differential subordination is determined. Further, sufficient conditions are obtained that ensure these solutions are either starlike or convex functions in \mathbb{D} . Such conditions in terms of differential inequalities have been investigated in several works, notably by [1, 2, 3, 4, 5, 6, 7]. In particular, Kanas and Owa [8] studied connections between certain second-order differential subordination involving expressions of the form f(z)/z, f'(z) and 1+zf''(z)/f'(z). The class studied in this paper presents a more general framework.

Proceedings of the 21st National Symposium on Mathematical Sciences (SKSM21) AIP Conf. Proc. 1605, 580-585 (2014); doi: 10.1063/1.4887653 © 2014 AIP Publishing LLC 978-0-7354-1241-5/\$30.00 The following lemma will be needed.

Lemma 1 [9, Theorem 1, p. 192] Let h be convex in \mathbb{D} with $h(0) = a, \gamma \neq 0$ and $\operatorname{Re} \gamma \geq 0$. If $p \in \mathcal{H}_n(a)$ and

$$p(z) + \frac{zp'(z)}{\gamma} \prec h(z),$$

then

$$p(z) \prec q(z) \prec h(z),$$

where

$$q(z) = \frac{\gamma}{nz^{\gamma/n}} \int_0^z h(t) t^{(\gamma/n)-1} dt.$$

The function q is convex and is the best (a, n) – dominant.

SECOND – ORDER DIFFERENTIAL SUBORDINATION

In the following sequel, we shall assume that h is an analytic convex function in \mathbb{D} with h(0) = 1. For $\beta \ge 0$ and $\alpha + 2\beta \ge 0$ consider the class of functions $f \in \mathcal{A}_n$ satisfying the second-order differential subordination

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) + \beta z f''(z) \prec h(z).$$
(1)

Let μ and ν satisfy

$$v + \mu = \alpha + \beta$$
 and $\mu v = \beta$. (2)

Note that $\operatorname{Re} \mu \ge 0$ and $\operatorname{Re} \nu \ge 0$.

The following result gives the best dominant to solutions of the differential subordination (1).

Theorem 1 Let μ and ν be given by (2), and α , β be real numbers such that $\beta \ge 0$ and $\alpha + 2\beta \ge 0$. If $f \in A_n$ satisfies

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) + \beta z f''(z) \prec h(z),$$

then

$$\frac{f(z)}{z} \prec q(z) := \frac{1}{\beta n^2} \int_0^1 \int_0^1 h(rsz) r^{(1/\mu n) - 1} s^{(1/\nu n) - 1} dr ds,$$

and q is the best (a, n) – dominant.

Proof. Let

$$p(z) = \frac{f(z)}{z} = 1 + a_{n+1}z^n + a_{n+2}z^{n+1} + \cdots.$$

Evidently

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) + \beta z f''(z) = \beta z^2 p''(z) + (\alpha + 2\beta)z p'(z) + p(z),$$

and (1) can be expressed as

$$\beta z^2 p''(z) + (\alpha + 2\beta) z p'(z) + p(z) \prec h(z).$$
(3)

Writing

$$F(z) = vzp'(z) + p(z),$$

it follows that

$$(z) + \mu z F'(z) = \beta z^2 p''(z) + (\alpha + 2\beta) z p'(z) + p(z) \prec h(z),$$

 $F(z) + \mu z F'(z) = \beta z^2 p''(z)$ where μ and ν are given by (2). Lemma 1 now yields

$$F(z) \prec \frac{1}{\mu n z^{1/\mu n}} \int_0^z h(t) t^{(1/\mu n) - 1} dt$$

and thus

$$p(z) + vzp'(z) = \frac{1}{\mu n} \int_0^1 h(rz) r^{(1/\mu n) - 1} dr.$$

A second application of Lemma 1 shows that

$$p(z) \prec \frac{1}{\nu n z^{1/\nu n}} \int_0^z \left(\frac{1}{\mu n} \int_0^1 h(rt) r^{(1/\mu n) - 1} dr \right) t^{(1/\nu n) - 1} dt,$$

which in view of (2) implies that

$$\frac{f(z)}{z} \prec q(z) \coloneqq \frac{1}{\beta n^2} \int_0^1 \int_0^1 h(rsz) r^{(1/\mu n) - 1} s^{(1/\nu n) - 1} dr ds.$$

Since $q(z) + (\alpha + 2\beta)nzq'(z) + \beta \left[n(n-1)zq'(z) + n^2 z^2 q''(z)\right] = h(z)$, the function Q(z) = zq(z) is a solution of the differential subordination

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) + \beta z f''(z) \prec h(z).$$

This shows that $q \prec \tilde{q}$ for all (a, n) – dominants \tilde{q} , and hence q is the best (a, n) – dominant. The following result is an immediate consequence of Theorem 1.

Corollary 1 Under the assumptions of Theorem 1, if

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) + \beta z f''(z) \prec 1 + Mz,$$
(4)

then

$$\frac{f(z)}{z} \prec 1 + \frac{Mz}{1 + \alpha n + \beta n(n+1)},\tag{5}$$

and the superordinate function is the best dominant.

An application of Corollary 1 gives the following sufficient condition for starlikeness.

Theorem 2 Let α and β be real numbers with $\alpha \ge 1$ and $\beta \ge 2\alpha$. Further let $f \in A_n$ and $0 < M < M(\alpha, \beta, n)$, where

$$M(\alpha, \beta, n) = \frac{2(\beta - 2\alpha)[1 + \alpha n + \beta n(n+1)]}{\alpha(n-1) + \beta[n(n+1) + 2]}.$$
(6)

If f satisfies the differential subordination

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) + \beta z f''(z) \prec 1 + Mz,$$

then $f \in ST$.

$$f(z) = zw'(z). \tag{7}$$

A brief computation shows that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = \operatorname{Re}\left(1 + \frac{zw''(z)}{w'(z)}\right).$$
(8)

In view of the analytical condition for starlikeness, that is, $\operatorname{Re}(zf'(z)/f(z)) > 0$ in \mathbb{D} , it remains to show that

$$\left| \frac{zw''(z)}{w'(z)} \right| < 1.$$
 (9)

Using (7), (4) can be rewritten as

$$w'(z) + (\alpha + 2\beta)zw''(z) + \beta z^2 w'''(z) \prec 1 + Mz.$$
⁽¹⁰⁾

Integrating (10), evidently

$$(1-\alpha)w(z) + \alpha zw'(z) + \beta z^2 w''(z) = z + Mz \int_0^1 \phi(sz) ds,$$
(11)

where ϕ is an analytic self-map of \mathbb{D} with $\phi(0) = 0$. It follows from (7) and (11) that

$$\left|\frac{zw''(z)}{w'(z)}\right| \le \frac{1}{\beta} \left|\frac{1}{w'(z)}\right| \left|1 + M \int_0^1 \phi(sz) ds\right| + \frac{(\alpha - 1)}{\beta} \left|\frac{w(z)}{zw'(z)}\right| + \frac{\alpha}{\beta}$$

For (9) to hold true, it is sufficient to prove

$$\frac{1}{\beta} \left| \frac{1}{w'(z)} \right| \left| 1 + M \int_0^1 \phi(sz) ds \right| + \frac{(\alpha - 1)}{\beta} \left| \frac{w(z)}{zw'(z)} \right| + \frac{\alpha}{\beta} < 1.$$
(12)

Now the subordination (5), implies

$$\left|\frac{1}{w'(z)}\right| < \frac{1+\alpha n+\beta n(n+1)}{1+\alpha n+\beta n(n+1)-M},\tag{13}$$

where $M < 1 + \alpha n + \beta n(n+1)$, while

$$\left|\frac{w(z)}{z}\right| < 1 + \frac{M}{2[1 + \alpha n + \beta n(n+1)]}.$$
(14)

Since $|\phi(z)| < |z|$, a brief computation shows that

$$\left|1 + M \int_{0}^{1} \phi(sz) ds\right| < 1 + \frac{M}{2}.$$
 (15)

Taking into account the inequalities (13), (14) and (15), the condition (12) is fulfilled whenever $M < M(\alpha, \beta, n)$ with $M(\alpha, \beta, n)$ given by (6). This completes the proof.

The following theorem which gives sufficient conditions for convexity is also a consequence of Corollary 1.

Theorem 3 Let α and β be real numbers with $\alpha \ge 1$ and $\beta \ge (2 + \sqrt{2})\alpha$. Further let $f \in A_n$ and $0 < M < M(\alpha, \beta, n)$, where

$$M(\alpha, \beta, n) = \frac{2[1 + \alpha n + \beta n(n+1)][(\beta - 2\alpha)^2 - 2\alpha^2]}{2\beta[2 + \alpha(n-1) + \beta n(n+1)] + (\beta - \alpha)[\alpha(n-1) + \beta n(n+1)]}.$$
(16)

If f satisfies the differential subordination

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) + \beta z f''(z) \prec 1 + Mz,$$

then $f \in CV$.

Proof. In view of the fact

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) \ge 1-\left|\frac{zf''(z)}{f'(z)}\right| > 0,$$

it is sufficient to prove the inequality

$$\left| \frac{zf''(z)}{f'(z)} \right| < 1.$$
(17)

Let

$$f'(z)\left[\left(1 + \frac{zf''(z)}{f'(z)}\right) - 1\right] = zf''(z).$$
(18)

Proceeding similarly as in the proof of Theorem 2, with ϕ as an analytic self-map of the unit disk, it follows from (18) and (4) that

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) + \beta f'(z) \left[\left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 \right] = 1 + M\phi(z).$$
(19)

Subsequently,

$$\frac{zf''(z)}{f'(z)} \le \frac{1}{\beta} \left| \frac{1}{f'(z)} \right| \left| 1 + M\phi(z) \right| + \frac{(\alpha - 1)}{\beta} \left| \frac{f}{zf'(z)} \right| + \frac{\alpha}{\beta},$$

which leads to the condition

$$\frac{1}{\beta} \left| \frac{1}{f'(z)} \right| \left| 1 + M\phi(z) \right| + \left(\frac{\alpha - 1}{\beta} \right) \left| \frac{f}{zf'(z)} \right| + \frac{\alpha}{\beta} < 1$$
(20)

for (17) to hold true.

Applying (7) and (11), as well as the inequalities (13), (14) and (15), yield

$$\left|\frac{1}{f'(z)}\right| < \frac{2\beta[1+\alpha n+\beta n(n+1)]}{2[1+\alpha n+\beta n(n+1)](\beta-2\alpha)-M[\alpha(n-1)+\beta(n(n+1)+2)]}$$
(21)

and

$$\left|\frac{f(z)}{zf'(z)}\right| < \frac{2\beta[1+\alpha n+\beta n(n+1)-M]}{2[1+\alpha n+\beta n(n+1)](\beta-2\alpha)-M[\alpha(n-1)+\beta(n(n+1)+2)]},$$
(22)

where

$$M < \frac{2(\beta - 2\alpha)[1 + \alpha n + \beta n(n+1)]}{\alpha(n-1) + \beta[n(n+1) + 2]}.$$

In view of (21), (22) and the fact that $|1+M\phi(z)| < 1+M$, (20) is fulfilled for $M < M(\alpha, \beta, n)$, where $M(\alpha, \beta, n)$ is given by (16). This completes the proof.

ACKNOWLEDGMENTS

The work presented here was supported in part by a research university grant from Universiti Sains Malaysia.

REFERENCES

- 1. R. M. Ali, Rocky Mountain J. Math. 24, No. 2, 447-45 (1994).
- 2. R. M. Ali and V. Singh, Complex Variables Theory Appl. 26, No. 4, 299-309 (1995).
- 3. R. M. Ali, S. Ponnusamy and V. Singh, Ann. Polon. Math. 61, No. 2, 135-140 (1995).
- 4. R. M. Ali, S. K. Lee, K. G. Subramanian and A.Swaminathan, Abstr. Appl. Anal. Art. ID 901235, 10 pp (2011).
- 5. R. Fournier and P.T. Mocanu, *Complex Variables Theory Appl.* 48, 283-292 (2003).
- 6. Y. C. Kim and H. M. Srivastava, Int. J. Math. Math. Sci. 22, No. 3, 649-654 (1999).
- 7. M. Obradovic, Mat. Vesnik. 49, 241-244 (1997).
- 8. S. Kanas and S. Owa, Sūrikaisekikenkyūsho Kokyūroku No. 1062, 25-33 (1998).
- 9. D. J. Hallenbeck and S. Ruscheweyh, Proc. Amer. Math. Soc. 52, 191-195 (1975).